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Abstract. Let G be a simple graph of order n. The domination polynomial of G is the polynomial
D(G, x) =

∑n
i=0 d(G, i)xi, where d(G, i) is the number of dominating sets of G of size i. Let n be any pos-

itive integer and Fn be the Friendship graph with 2n + 1 vertices and 3n edges, formed by the join of K1

with nK2. We study the domination polynomials of this family of graphs, and in particular examine the
domination roots of the family, and find the limiting curve for the roots. We also show that for every n > 2,
Fn is not D-unique, that is, there is another non-isomorphic graph with the same domination polynomial.
Also we construct some families of graphs whose real domination roots are only −2 and 0. Finally, we
conclude by discussing the domination polynomials of a related family of graphs, the n-book graphs Bn,
formed by joining n copies of the cycle graph C4 with a common edge.

1. Introduction

Let G = (V,E) be a simple graph. For any vertex v ∈ V(G), the open neighborhood of v is the set
N(v) = {u ∈ V(G)|uv ∈ E(G)} and the closed neighborhood of v is the set N[v] = N(v) ∪ {v}. For a set S ⊆ V(G),
the open neighborhood of S is N(S) =

⋃
v∈S N(v) and the closed neighborhood of S is N[S] = N(S)∪ S. A set

S ⊆ V(G) is a dominating set if N[S] = V or equivalently, every vertex in V(G)\S is adjacent to at least one
vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set in G. For a detailed
treatment of domination theory, the reader is referred to [31].

LetD(G, i) be the family of dominating sets of a graph G with cardinality i and let d(G, i) = |D(G, i)|. The
domination polynomial D(G, x) of G is defined as D(G, x) =

∑|V(G)|
i=γ(G) d(G, i)xi (see [2, 7, 32]). This polynomial

is the generating polynomial for the number of dominating sets of each cardinality. Similar generating
polynomials for other combinatorial sequences, such as independents sets in a graph [12, 13, 15, 16, 18, 21, 24–
30], have attracted recent attention. The algebraic encoding of salient counting sequences allows one to not
only develop formulas more easily, but also, often, to prove unimodality results via the nature of the the
roots of the associated polynomials (a well known result of Newton states that if a real polynomial with
positive coefficients has all real roots, then the coefficients form a unimodal sequence (see, for example,
[19]). A root of D(G, x) is called a domination root of G. The set of distinct roots of D(G, x) is denoted by
Z(D(G, x)) - see [4, 6, 17].
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Figure 1: Friendship graphs F2,F3,F4 and Fn, respectively.

Calculating the domination polynomial of a graph G is difficult in general, as the smallest power
of a non-zero term is the domination number γ(G) of the graph, and determining whether γ(G) ≤ k is
known to be NP-complete [23]. But for certain classes of graphs, we can find a closed form expression
for the domination polynomial. In the next section we will introduce friendship graphs and calculate
their domination polynomials, exploring the nature and location of their roots in conjunction with some
outstanding conjectures on domination roots.

2. Domination polynomials and domination roots of friendship graphs

The friendship (or Dutch-Windmill) graph Fn is a graph that can be constructed by coalescence n copies
of the cycle graph C3 of length 3 with a common vertex. The Friendship Theorem of Paul Erdös, Alfred
Rényi and Vera T. Sós [20], states that graphs with the property that every two vertices have exactly one
neighbour in common are exactly the friendship graphs. Figure 1 shows some examples of friendship
graphs.

Theorem 2.1. For every n ∈N,
D(Fn, x) = (2x + x2)n + x(1 + x)2n.

Proof. The join G = G1 + G2 of two graph G1 and G2 with disjoint vertex sets V1 and V2 and edge sets E1
and E2 is the graph union G1∪G2 together with all the edges joining V1 and V2. An elementary observation
is that if G1 and G2 are graphs of orders n1 and n2, respectively, then

D(G1 ∪ G2, x) = D(G1, x)D(G2, x)

and

D(G1 + G2, x) =
(
(1 + x)n1 − 1

)(
(1 + x)n2 − 1

)
+ D(G1, x) + D(G2, x).

Clearly D(K1, x) = x and D(K2, x) = 2x + x2, so by the previous observations,

D(Fn, x) = D(K1 + nK2, x)
= (1 + x − 1)1((1 + x)2n

− 1) + x + (2x + x2)n

= (2x + x2)n + x(1 + x)2n.

The domination roots of friendship graphs exhibit a number of interesting properties (see Figure 2).
Even though we cannot find the roots explicitly, there is much we can say about them.

2.1. Real domination roots of friendship graphs
It is known that −1 is not a domination root as the number of dominating sets in a graph is always odd

[11]. On the other hand, of course, 0 is a domination root of every graph, but there are graphs with no
nonzero real domination roots. Here we investigate the real domination roots of friendship graphs, and
prove first that for any odd natural number n, friendship graphs Fn have no real domination roots except
zero.
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Figure 2: Domination roots of graphs Fn, for 1 ≤ n ≤ 30.

Theorem 2.2. For every odd natural number n, no nonzero real number is a domination root of Fn.

Proof. By Theorem 2.1, for every n ∈N, D(Fn, x) = (2x + x2)n + x(1 + x)2n. If D(Fn, x) = 0 with x , 0, then we
have

x = −

(
1 −

1
(1 + x)2

)n

.

We consider three cases, and show in each there is no nonzero solution.

• x > 0 : Obviously the above equality is true just for real number 0, since for nonzero real number the
left side of equality is positive but the right side is negative.

• x ≤ −2 : In this case the left side is less than −2 and the right side −
(
1 − 1

(1+x)2

)n
is greater than −1, a

contradiction.

• −2 < x < 0 : In this case there are no real solutions x as for odd n and for every real number −2 < x < 0,
the left side of equality is negative but the right side is positive.

Thus in any event, there are no nonzero real domination roots of friendship graphs Fn where n is odd.

We point out that the first two cases also hold when n is even, and hence any real nonzero domination
roots of friendship graphs, when n is even, lie in (−2, 0), and indeed, it appears that there are always
exactly two real nonzero domination roots in this case. We can show that there are at least two real nonzero
domination roots for Fn where n is even: for n even, we see that

• near but to the left of 0,

D(Fn, x) = (2x + x2)n + x(1 + x)2n = xn(x + 2)n + x(1 + x)2n < 0,

• D(Fn,−1) = (−1)n > 0, and

• D(Fn,−2) = −2(−1)2n < 0.
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Hence by the Intermediate Value Theorem, D(Fn, x) has at least two real roots in (−2, 0) (with neither being
−1). Thus the real domination roots of the Friendship graphs are quite different, depending on the parity
of n.

In fact, for n ≤ 10, the real roots of D(Fn, x) are (to ten significant digits) shown in Table 2.1. The two
nonzero real domination roots for n even seem to approach limits, and we will have more to say about this
in the next section.

n real domination roots
1 0
2 −1.660992532, − 0.1516251043, 0
3 0
4 −1.683727169, − 0.2316175850, 0
5 0
6 −1.691458147, − 0.2537459684, 0
7 0
8 −1.695348455, − 0.2641276712, 0
9 0

10 −1.697690028, − 0.2701559954, 0

Table 1: Real domination roots of the friendship graph Fn.

2.2. Limits of domination roots of friendship graphs
What about the complex domination roots of friendship graphs? The plot in Figure 2 suggests that the

roots tend to lie on a curve. In order to find the limiting curve, we will need a definition and a well known
result.

Definition 2.3. If fn(x) is a family of (complex) polynomials, we say that a number z ∈ C is a limit of roots of fn(x)
if either fn(z) = 0 for all sufficiently large n or z is a limit point of the set R( fn(x)), where R( fn(x)) is the union of the
roots of the fn(x).

The following restatement of the Beraha-Kahane-Weiss theorem [10] can be found in [14].

Theorem 2.4. Suppose fn(x) is a family of polynomials such that

fn(x) = α1(x)λ1(x)n + α2(x)λ2(x)n + ... + αk(x)λk(x)n (1)

where the αi(x) and the λi(x) are fixed non-zero polynomials, such that for no pair i , j is λi(x) ≡ ωλ j(x) for some
ω ∈ C of unit modulus. Then z ∈ C is a limit of roots of fn(x) if and only if either

(i) two or more of the λi(z) are of equal modulus, and strictly greater (in modulus) than the others; or

(ii) for some j, λ j(z) has modulus strictly greater than all the other λi(z), and α j(z) = 0

We use Theorem 2.4 to find the limits of the domination roots of friendship graphs. To do so, we rewrite
the domination polynomial

D(Fn, x) = (2x + x2)n + x(1 + x)2n.

of friendship graphs by setting y = 1 + x. Then we need to consider the limit of roots of

fn(y) = (y2
− 1)n + (y − 1)y2n,

which we rewrite in a form for which we can apply Theorem 2.4:

fn(y) = (y2
− 1)n + (y − 1)(y2)n.
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We set

α1(y) = 1, α2(y) = y − 1, λ1(y) = y2
− 1, and λ2 = y2.

Clearly there is no ω ∈ C of modulus 1 for which λ1 = ωλ2 (or vice versa), so we can apply Theorem 2.4.
Case (ii) is easiest to handle first, as α1 is never 0, and α2 = 0 if and only if y = 1, and in this case
|λ2(1)| = |1| > 0 = |λ1(1)|, so we conclude y = 1 (and hence x = 0) is a limit of domination roots of friendship
graphs.

The more interesting case is (i), and here we seek all y for which |λ1(y)| = |λ2(y)|, that is,

|y2
− 1| = |y2

|.

To find this curve, let a =<(y) and b = =(y). Then by substituting in y = a + ib and squaring both sides, we
have

(a2
− 1 − b2)2 + (2ab)2 = (a2

− b2)2 + (2ab)2.

This is equivalent to

a2
− b2 =

1
2
,

a hyperbola. Hence, we converting back to variable x, we have the following.

Theorem 2.5. The limit of domination roots of friendship graphs is 0 together with the hyperbola

(<x + 1)2
− (=x)2 =

1
2
.

Figure 3: Domination roots of graphs Fn, for 1 ≤ n ≤ 30 along with limiting curve.

Figure 3 shows the limiting curve. We see that this curve meets the real axis at −1 −
1
√

2
≈ −1.7071

and −1 +
1
√

2
≈ −0.2929, which agrees well with Table 1. Also, in [17] a family of graphs was produced

with roots just barely in the right-half plane (showing that not all domination polynomials are stable),
but Theorem 2.5 provides an explicit family (namely the friendship graphs) whose domination roots have
unbounded positive real part.
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2.3. Uniqueness of domination polynomials of friendship graphs
Two graphs G and H are said to be dominating equivalent, or simply D-equivalent, written G ∼ H, if

D(G, x) = D(H, x). It is evident that the relation ∼ of being D-equivalence is an equivalence relation on
the family G of graphs, and thus G is partitioned into equivalence classes, called the D-equivalence classes.
Given G ∈ G, let

[G] = {H ∈ G : H ∼ G}.

We call [G] the equivalence class determined by G. A graph G is said to be dominating unique, or simply
D-unique, if [G] = {G}, that is, if a graph has the same domination polynomial as G, then it must be
isomorphic to G.

A question of recent interest concerning this equivalence relation [·] asks which graphs are determined
by their domination polynomial. It is known that cycles [2] and cubic graphs of order 10 [8] (particularly,
the Petersen graph) are, while if n ≡ 0(mod 3), the paths of order n are not [2]. In [9], the authors completely
described the complete r-partite graphs which are D-unique. Their results in the bipartite case, settles in
the affirmative a conjecture in [1].

What about friendship graphs – are they D-unique? To answer this question, we introduce a related
family of graphs. The n-book graph Bn can be constructed by bonding n copies of the cycle graph C4 along
a common edge {u, v}, see Figure 4. We’ll now develop a formula for the domination polynomials of book
graphs.

vv

Figure 4: The book graphs B3 and B4, respectively.

We begin first with a graph operation. For two graphs G = (V,E) and H = (W,F), the corona G ◦H is the
graph arising from the disjoint union of G with |V| copies of H, by adding edges between the ith vertex of
G and all vertices of ith copy of H [22]. It is easy to see that the corona operation of two graphs does not
have the commutative property. The following theorem computes the domination polynomial of corona
products of two graphs.

Theorem 2.6. [3, 33] Let G = (V,E) and H = (W,F) be nonempty graphs of order n and m, respectively. Then

D(G ◦H, x) = (x(1 + x)m + D(H, x))n.

The vertex contraction G/u of a graph G by a vertex u is the operation under which all vertices in N(u)
are joined to each other and then u is deleted (see[34]).

The following result is useful for finding the recurrence relations for the domination polynomials of
arbitrary graphs.

Theorem 2.7. [5, 33] Let G be a graph. For any vertex u in G we have

D(G, x) = xD(G/u, x) + D(G − u, x) + xD(G −N[u], x) − (1 + x)pu(G, x),

where pu(G, x) is the polynomial counting the dominating sets of G− u which do not contain any vertex of N(u) in G.

Theorem 2.7 can be used to give a recurrence relation which removes triangles. Similar to [33] we denote
the graph G � u, obtained from G by the removal of all edges between any pair of neighbors of u. Note u
is not removed from the graph. The following recurrence relation is useful on graphs which have many
triangles.
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Theorem 2.8. [33] Let G be a graph and u ∈ V. Then

D(G, x) = D(G − u, x) + D(G � u, x) −D(G � u − u, x).

We are now ready to give a formula for the domination polynomial of Bn.

Theorem 2.9. For every n ∈N,

D(Bn, x) = (x2 + 2x)n(2x + 1) + x2(x + 1)2n
− 2xn.

Proof. Consider graph Bn and vertex v in the common edge (see Figure 4). By Theorem 2.7 we have:

D(Bn, x) = xD(Bn/v, x) + D(Bn − v, x) + xD(Bn −N[v], x) − (1 + x)pv(Bn, x)
= xD(Bn/v, x) + D(Bn − v, x) + x(D(nK1, x)) − (1 + x)xn

= xD(Bn/v, x) + D(Bn − v, x) − xn.

u

w

Figure 5: Graphs B4/v and B4 − v, respectively.

Now we use Theorem 2.8 to obtain the domination polynomial of the graph Bn/v (see Figure 5). We have

D(Bn/v, x) = D((Bn/v) − u, x) + D((Bn/v) � u, x) −D(2nK1, x),

where (Bn/v) − u = Kn ◦ K1 and (Bn/v) � u = K1,2n (see Figure 6).

Figure 6: Graphs B4/v − u and B4/v � u, respectively.

Using Theorem 2.8, we deduce that, D(Bn/v, x) = (2x + x2)n + x(x + 1)2n. Also we use Theorems 2.6
and 2.7 to obtain the domination polynomial of the graph Bn − v (see Figure 5). Hence D(Bn − v, x) =
xD((Bn − v)/w, x) + D(K2, x)n

− xn, where (Bn − v)/w = Kn ◦ K1. So D(Bn − v, x) = (2x + x2)n(x + 1) − xn. Note
that in this case pv(Bn, x) = pw(Bn − v, x) = xn. Consequently,

D(Bn, x) = x((2x + x2)n + x(x + 1)2n) + (2x + x2)n(x + 1) − xn
− xn

= (x2 + 2x)n(2x + 1) + x2(x + 1)2n
− 2xn.

Theorem 2.10. For each natural number n ≥ 3, the friendship graph Fn is not D-unique, as Fn and Bn/v have the
same domination polynomial.

Proof. In the proof of Theorem 2.9, we proved that D(Bn/v, x) = (2x + x2)n + x(x + 1)2n. Therefore D(Fn, x) =
D(Bn/v, x). Since Fn is not isomorphic to Bn/v, for each natural number n ≥ 3, so the friendship graphs are
notD-unique and [Fn] ⊇ {Fn,Bn/v}.
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3. Open Problems

The results of the previous section show that even if we can find an explicit formula for the domination
polynomial of a graph, there are still interesting, difficult problems concerning the roots. With regards to
friendship graphs, we pose the following:

Question 3.1. For n even, does Fn have exactly three real roots?

Question 3.2. What is a good upper bound on the modulus of the roots of Fn?

Some calculations seem to indicate that the moduli of the roots, while going off to infinity (by Theo-
rem 2.5), do so quite slowly, perhaps like ln n. The book graphs indeed have a more interesting formula
than friendship graphs. Figure 7 shows the domination roots of n-book graph for n ≤ 30. Questions about
the real roots, the limit of the roots, bounding the moduli of the roots can be asked as well. (We remark
that using Theorem 2.4, we can show that the limit of the roots is the circle |x + 2| = 1 with real part at least

−
3
2
−

√
2

2
, the portion of the hyperbola (<x + 1)2

− (=x)2 = 1
2 in the right half-plane, plus the portion of the

curve |x + 1|2 = |x|with real part at most −
3
2
−

√
2

2
.)

Figure 7: Domination roots of graphs Bn, for 1 ≤ n ≤ 30.

Question 3.3. What can be said about the domination roots of book graphs?

Along these lines, there is a conjecture which states that, the set of integer domination roots of any graphs
is a subset of {−2, 0} ([6]). Now we show that there are infinite families of graphs, based on friendship and
book graphs, whose their domination polynomials have real roots −2 and 0.

Theorem 3.4. (i) For every odd natural number n, the only nonzero real domination root of Bn ◦ Fn is −2.
(ii) For every even natural number n, the only nonzero real domination root of Bn ◦ Fn+1 and Bn+1 ◦ Fn is −2.
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Proof. (i) By Theorems 2.1 and 2.6 for any odd natural number n and arbitrary graph G we have,

D(G ◦ Fn, x) =
(
x(1 + x)2n+1 + (2x + x2)n + x(1 + x)2n

)|V(G)|

=
(
x[(1 + x)2n+1 + xn−1(2 + x)n + (1 + x)2n]

)|V(G)|

=
(
x[(1 + x)2n(1 + x + 1) + xn−1(2 + x)n]

)|V(G)|

=
(
x(2 + x)[(1 + x)2n + xn−1(2 + x)n−1]

)|V(G)|

= (x(2 + x))|V(G)|
(
[(1 + x)2n + (2x + x2)n−1]

)|V(G)|
.

Now we prove that, for each odd natural n, fn(x) = (2x + x2)n−1 + (1 + x)2n has no real roots. If fn(x) = 0, then
we have

((1 + x)2
− 1)n−1 = −(1 + x)2n.

Obviously the above equality is not true for any real number. Because for odd n and for every real number,
the left side of equality is positive but the right side is negative.
(ii) Proof is similar to proof of Part (i).

Along the same lines, we can show:

Theorem 3.5. (i) Every graph H in the family {G ◦ K2n, (G ◦ K2n) ◦ K2n, ((G ◦ K2n) ◦ K2n) ◦ K2n, · · · } does not
have real domination roots, except zero.

(ii) Every graph H in the family {G ◦ K2n+1, (G ◦ K2n+1) ◦ K2n+1, ((G ◦ K2n+1) ◦ K2n+1) ◦ K2n+1, · · · } does not have
real domination roots, except {−2, 0}.

(iii) Every graph H in the family {G◦B2, (G◦B2)◦B2, ((G◦B2)◦B2)◦B2, · · · } does not have real domination roots,
except zero.

We end off on a final problem.

Question 3.6. Is −2 the only possible nonzero integer domination root?
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